Our drinking water is surface water. Our surface water is supplied by North Texas MWD through a contract with the City of Forney. The surface water is obtained from multiple sources: Lake Lavon (50%), Lake Texoma (30%), and Lake Chapman (20%). TCEQ completed an assessment of your source water and results indicate that some of your sources are susceptible to certain contaminants. The sampling requirements for your water system are based on this susceptibility and previous sampling data. Any detections of these contaminants may be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts at our system, contact Clay Taylor, Severn Trent Services.

Further details about sources and source water assessments are available in Drinking Water Watch at the following URL: http://dww.tceq.state.tx.us/DWW/.

The sources of drinking water (both tap water and bottled water) generally include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and in some cases, radioactive material, and can pick up substances resulting from the presence of contaminants that may be present in source water:

1) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and industrial or domestic wastewater discharges, oil and gas production, mining, or farming. 2) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. 4) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also, come from gas stations, urban storm water runoff, and septic systems. 5) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Many constituents (such as calcium, sodium, or iron) which are often found in drinking water can cause taste, color, and odor problems. The taste and odor constituents are called secondary constituents and are regulated by the State of Texas, not the EPA. These constituents are not causes for health concern. Therefore, secondaries are not required to be reported in this document but they may greatly affect the appearance and taste of your water. The pages that follow list all of the federally regulated or monitored contaminants which have been found in your drinking water. The U.S. EPA requires water systems to test for up to 97 contaminants.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the district’s operator, Severn Trent Services.

When drinking water meets federal standards there may not be any health based benefits to purchasing bottled water or point of use devices. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care provider. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants does not necessarily indicate that water poses a health risk. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care provider. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Your municipality is responsible for ensuring that water conveyed through your water system is obtained from multiple sources: Lake Lavon (50%), Lake Texoma (30%), and Lake Chapman (20%). The level of lead in water may be influenced by your own private water system. The tendency of lead to occur in drinking water stems from its ability to dissolve when water containing lead comes in contact with materials such as lead service lines, lead solder, galvanized fittings, and pewter. If you have any questions about the water loss audit please call Severn Trent Services at 972-552-9486.

Definitions & Abbreviations:
- Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology.
- Maximum Residual Disinfectant Level Goal (MRDLG): The level of drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- Action Level (AL): The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements that a water system must follow.
- Parts per million (ppm): The equivalent of milligrams per liter (mg/l) is analogous to 1 minute in 2 years.
- Parts per billion (ppb): The equivalent of micrograms per liter (µg/l) is analogous to 1 second in 32 years.
- Picocuries per liter (pCi/L): A measure of radioactivity.
- N/A: Not applicable.
- NTU: Nephelometric Turbidity Units.

Kaufman County FWSD 1D Drinking Water Quality Report

2015 Drinking Water Quality Report

Definitions & Abbreviations:
- Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology.
- Maximum Residual Disinfectant Level Goal (MRDLG): The level of drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- Action Level (AL): The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements that a water system must follow.
- Parts per million (ppm): The equivalent of milligrams per liter (mg/l) is analogous to 1 minute in 2 years.
- Parts per billion (ppb): The equivalent of micrograms per liter (µg/l) is analogous to 1 second in 32 years.
- Picocuries per liter (pCi/L): A measure of radioactivity.
- N/A: Not applicable.
- NTU: Nephelometric Turbidity Units.

Page 1 of 4 PWS #: 1290043
Unregulated Contaminants

<table>
<thead>
<tr>
<th>Substance</th>
<th>Unit of Measure</th>
<th>Year</th>
<th>MCL</th>
<th>Average Level Detected</th>
<th>Minimum - Maximum Level Detected</th>
<th>MCLG</th>
<th>In Compliance</th>
<th>Typical Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dibromochloromethane</td>
<td>ppb</td>
<td>2015</td>
<td>N/A</td>
<td>5.32</td>
<td>3.4 - 6.55</td>
<td>N/A</td>
<td>Yes</td>
<td>By-product of drinking water disinfection.</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ppb</td>
<td>2015</td>
<td>N/A</td>
<td>14.06</td>
<td>6.68 - 24.7</td>
<td>N/A</td>
<td>Yes</td>
<td>By-product of drinking water disinfection.</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ppb</td>
<td>2015</td>
<td>N/A</td>
<td>0</td>
<td>0 - 0</td>
<td>N/A</td>
<td>Yes</td>
<td>By-product of drinking water disinfection.</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ppb</td>
<td>2015</td>
<td>N/A</td>
<td>9.57</td>
<td>8 - 11.2</td>
<td>N/A</td>
<td>Yes</td>
<td>By-product of drinking water disinfection.</td>
</tr>
</tbody>
</table>

Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

Inorganic Contaminants (Regulated at the Water Plant)

<table>
<thead>
<tr>
<th>Substance</th>
<th>Unit of Measure</th>
<th>Year</th>
<th>MRL</th>
<th>Average Level Detected</th>
<th>Minimum - Maximum Level Detected</th>
<th>MRLDG</th>
<th>In Compliance</th>
<th>Typical Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate</td>
<td>ppm</td>
<td>2015</td>
<td>10</td>
<td>0.58</td>
<td>0.58 - 0.58</td>
<td>10</td>
<td>Yes</td>
<td>Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits.</td>
</tr>
<tr>
<td>Nitrite</td>
<td>ppm</td>
<td>2015</td>
<td>1</td>
<td>0</td>
<td>0 - 0</td>
<td>1</td>
<td>Yes</td>
<td>Natural Erosion</td>
</tr>
</tbody>
</table>

Disinfectant Byproducts

<table>
<thead>
<tr>
<th>Substance</th>
<th>Unit of Measure</th>
<th>Year</th>
<th>MRL</th>
<th>Average Level Detected</th>
<th>Minimum - Maximum Level Detected</th>
<th>MRLDG</th>
<th>In Compliance</th>
<th>Typical Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haloacetic Acids (HAAS)</td>
<td>ppb</td>
<td>2015</td>
<td>60</td>
<td>19.56</td>
<td>4.1 - 35.8</td>
<td>0</td>
<td>Yes</td>
<td>By-product of drinking water disinfection.</td>
</tr>
<tr>
<td>Total Trihalomethanes</td>
<td>ppb</td>
<td>2015</td>
<td>80</td>
<td>28.95</td>
<td>19.4 - 41.7</td>
<td>0</td>
<td>Yes</td>
<td>By-product of drinking water disinfection.</td>
</tr>
</tbody>
</table>

Maximum Residual Disinfectant Level

<table>
<thead>
<tr>
<th>Substance</th>
<th>Unit of Measure</th>
<th>Year</th>
<th>MRL</th>
<th>Average Level Detected</th>
<th>Minimum - Maximum Level Detected</th>
<th>MRLDG</th>
<th>In Compliance</th>
<th>Typical Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine Residual</td>
<td>ppm</td>
<td>2015</td>
<td>4.0</td>
<td>1.79</td>
<td>0.78 - 2.73</td>
<td>4.0</td>
<td>Yes</td>
<td>Water additive used to control microbes.</td>
</tr>
</tbody>
</table>

Lead and Copper (Regulated at Customers Tap)

<table>
<thead>
<tr>
<th>Substance</th>
<th>Unit of Measure</th>
<th>Year</th>
<th>90th Percentile Value</th>
<th>EPA Action Level</th>
<th>Number of Results above Action Level</th>
<th>MCLG</th>
<th>In Compliance</th>
<th>Typical Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>ppb</td>
<td>2013</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>Yes</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits.</td>
</tr>
<tr>
<td>Copper</td>
<td>ppm</td>
<td>2013</td>
<td>0.452</td>
<td>1.3</td>
<td>0</td>
<td>1.3</td>
<td>Yes</td>
<td>Corrosion of household plumbing systems, erosion of natural deposits; leaching from wood preservatives.</td>
</tr>
</tbody>
</table>

Violations

Violation Type
Chlorine Monitoring: Failure to Submit Disinfectant Level Quarterly Operating Report (DLQOR)

Duration
07/01/2015 to 09/30/2015

Health Effects
We are required to properly disinfect water before distribution, maintain acceptable disinfection residuals within the distribution system, monitor the disinfectant residual at various locations throughout the distribution system and report the result of that monitoring to the TCEQ on a quarterly basis. Results of regular monitoring are an indicator of whether or not your drinking water is safe from microbial contamination. Regular chlorine monitoring was performed; however, we failed to submit the required quarterly report to the TCEQ.

Explanation
We are required to properly disinfect water before distribution, maintain acceptable disinfection residuals within the distribution system, monitor the disinfectant residual at various locations throughout the distribution system and report the result of that.

Steps to Correct
The third quarter disinfectant level quarterly operating report for the third quarter of 2015 was submitted to the TCEQ before the due date. Proof of delivery was also sent to TCEQ however the violation was not rejected.
Our Water Supply System Received Water From
North Texas MWD Water Supplied Through City of Forney Agreement
Water Quality Results are Listed Below

<table>
<thead>
<tr>
<th>Substance</th>
<th>Unit of Measure</th>
<th>Year</th>
<th>MCL</th>
<th>Minimum - Maximum Level Detected</th>
<th>MCLG</th>
<th>In Compliance</th>
<th>Typical Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthetic Organic Contaminants Including Pesticides and Herbicides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine</td>
<td>ppb</td>
<td>2015</td>
<td>3</td>
<td>0.16 0.13 - 0.19</td>
<td>3</td>
<td>Yes</td>
<td>Runoff from herbicide used on row crops.</td>
</tr>
<tr>
<td>Volatile Organic Contaminants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Di(2-ethylhexyl)phthalate</td>
<td>ug/L</td>
<td>2015</td>
<td>6</td>
<td>0.65 0.6 - 0.7</td>
<td>6</td>
<td>Yes</td>
<td>Discharge from rubber and chemical factories.</td>
</tr>
<tr>
<td>Unregulated Contaminants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ppb</td>
<td>2015</td>
<td>N/A</td>
<td>3.93 3.6 - 4.25</td>
<td>N/A</td>
<td>Yes</td>
<td>By-product of drinking water disinfection.</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ppb</td>
<td>2015</td>
<td>N/A</td>
<td>9.55 7.87 - 10.9</td>
<td>N/A</td>
<td>Yes</td>
<td>By-product of drinking water disinfection.</td>
</tr>
<tr>
<td>Bromoform</td>
<td>ppb</td>
<td>2015</td>
<td>N/A</td>
<td>0.0 0 - 0</td>
<td>N/A</td>
<td>Yes</td>
<td>By-product of drinking water disinfection.</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ppb</td>
<td>2015</td>
<td>N/A</td>
<td>8.81 7.68 - 9.88</td>
<td>N/A</td>
<td>Yes</td>
<td>By-product of drinking water disinfection.</td>
</tr>
</tbody>
</table>

Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

<table>
<thead>
<tr>
<th>Inorganic Contaminants (Regulated at the Water Plant)</th>
<th>Unit of Measure</th>
<th>Year</th>
<th>MCL</th>
<th>Minimum - Maximum Level Detected</th>
<th>MCLG</th>
<th>In Compliance</th>
<th>Typical Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate</td>
<td>ppm</td>
<td>2015</td>
<td>10</td>
<td>0.57 0.446 - 0.643</td>
<td>10</td>
<td>Yes</td>
<td>Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits.</td>
</tr>
<tr>
<td>Fluoride</td>
<td>ppm</td>
<td>2015</td>
<td>4</td>
<td>0.41 0.304 - 0.471</td>
<td>4</td>
<td>Yes</td>
<td>Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories.</td>
</tr>
<tr>
<td>Cyanide</td>
<td>ppb</td>
<td>2015</td>
<td>200</td>
<td>129.33 101 - 184</td>
<td>200</td>
<td>Yes</td>
<td>Discharge from plastic and fertilizer factories; discharge from steel/metal factories.</td>
</tr>
<tr>
<td>Antimony</td>
<td>ppb</td>
<td>2015</td>
<td>6</td>
<td>0.2 0.2 - 0.2</td>
<td>6</td>
<td>Yes</td>
<td>Discharge from petroleum refineries.</td>
</tr>
<tr>
<td>Arsenic</td>
<td>ppb</td>
<td>2015</td>
<td>10</td>
<td>0.72 0.72 - 0.72</td>
<td>0</td>
<td>Yes</td>
<td>Erosion of natural deposits; runoff from orchards; runoff from glass, and electronics production wastes.</td>
</tr>
<tr>
<td>Barium</td>
<td>ppm</td>
<td>2015</td>
<td>2</td>
<td>0.05 0.039 - 0.055</td>
<td>2</td>
<td>Yes</td>
<td>Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits.</td>
</tr>
<tr>
<td>Chromium</td>
<td>ppm</td>
<td>2015</td>
<td>100</td>
<td>0.7 0.53 - 0.95</td>
<td>100</td>
<td>Yes</td>
<td>Natural Erosion</td>
</tr>
<tr>
<td>Selenium</td>
<td>ppm</td>
<td>2015</td>
<td>50</td>
<td>1.8 1.6 - 2</td>
<td>50</td>
<td>Yes</td>
<td>Erosion of natural deposits.</td>
</tr>
</tbody>
</table>

| **Turbidity** | NTU | 2015 | 1 | 0.33 0 - 0.65 | N/A | Yes | Soil runoff. |

Turbidity has no health effects. However, turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organisms. These organisms include bacteria, viruses, and parasites that can cause symptoms such as nausea, cramps, diarrhea and associated headaches.

<table>
<thead>
<tr>
<th>Disinfectant Byproducts</th>
<th>Unit of Measure</th>
<th>Year</th>
<th>MCL</th>
<th>Minimum - Maximum Level Detected</th>
<th>MCLG</th>
<th>In Compliance</th>
<th>Typical Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haloacetic Acids (HAAs)</td>
<td>ppb</td>
<td>2013</td>
<td>60</td>
<td>16.55 10.6 - 21</td>
<td>0</td>
<td>Yes</td>
<td>By-product of drinking water disinfection.</td>
</tr>
<tr>
<td>Total Trihalomethanes</td>
<td>ppb</td>
<td>2013</td>
<td>80</td>
<td>36.35 22.6 - 45.5</td>
<td>0</td>
<td>Yes</td>
<td>By-product of drinking water disinfection.</td>
</tr>
</tbody>
</table>
Our Water Supply System Received Water From
City of Forney

Water Quality Results are Listed Below

<table>
<thead>
<tr>
<th>Substance</th>
<th>MCLG</th>
<th>In Compliance</th>
<th>Typical Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthetic Organic Contaminants Including Pesticides and Herbicides</td>
<td></td>
<td></td>
<td>Discharge from chemical factories</td>
</tr>
<tr>
<td>Di(2-ethylhexyl) adipate</td>
<td>400</td>
<td>Yes</td>
<td>Herbicide runoff.</td>
</tr>
<tr>
<td>Simazine</td>
<td>4</td>
<td>Yes</td>
<td>Runoff from herbicide used on row crops.</td>
</tr>
<tr>
<td>Atrazine</td>
<td>3</td>
<td>Yes</td>
<td>Naturally present in the environment.</td>
</tr>
</tbody>
</table>

Volatle Organic Contaminants

<table>
<thead>
<tr>
<th>Substance</th>
<th>Year</th>
<th>Concentration</th>
<th>Maximum Level Detected</th>
<th>Typical Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Organic Carbon</td>
<td>2011</td>
<td>ppm</td>
<td>4.92 - 4.92 N/A</td>
<td>Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits.</td>
</tr>
</tbody>
</table>

Unregulated Contaminants

<table>
<thead>
<tr>
<th>Substance</th>
<th>Year</th>
<th>Concentration</th>
<th>Concentration</th>
<th>Concentration</th>
<th>Concentration</th>
<th>Typical Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dibromochloromethane</td>
<td>2015</td>
<td>N/A</td>
<td>5.9</td>
<td>4.1 - 9.9</td>
<td>N/A</td>
<td>By-product of drinking water disinfection.</td>
</tr>
<tr>
<td>Chloroform</td>
<td>2015</td>
<td>N/A</td>
<td>15.38</td>
<td>4.95 - 26.7</td>
<td>N/A</td>
<td>By-product of drinking water disinfection.</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>2015</td>
<td>N/A</td>
<td>10.63</td>
<td>8.83 - 15.3</td>
<td>N/A</td>
<td>By-product of drinking water disinfection.</td>
</tr>
</tbody>
</table>

Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

Inorganic Contaminants (Regulated at the Water Plant)

<table>
<thead>
<tr>
<th>Substance</th>
<th>Year</th>
<th>Concentration</th>
<th>Concentration</th>
<th>Concentration</th>
<th>Concentration</th>
<th>Typical Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate</td>
<td>2015</td>
<td>ppm</td>
<td>0.14</td>
<td>0.14 - 0.14</td>
<td>10</td>
<td>Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits.</td>
</tr>
<tr>
<td>Fluoride</td>
<td>2011</td>
<td>ppm</td>
<td>0.66</td>
<td>0.66 - 0.66</td>
<td>4</td>
<td>Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories.</td>
</tr>
<tr>
<td>Barium</td>
<td>2011</td>
<td>ppm</td>
<td>0.04</td>
<td>0.04 - 0.04</td>
<td>2</td>
<td>Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits.</td>
</tr>
</tbody>
</table>

Turbidity

<table>
<thead>
<tr>
<th>Substance</th>
<th>Year</th>
<th>Concentration</th>
<th>Concentration</th>
<th>Concentration</th>
<th>Concentration</th>
<th>Typical Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity</td>
<td>2011</td>
<td>NTU</td>
<td>0.96</td>
<td>0.96 - 0.96</td>
<td>N/A</td>
<td>Soil runoff.</td>
</tr>
</tbody>
</table>

Turbidity has no health effects. However, turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organisms. These organisms include bacteria, viruses, and parasites that can cause symptoms such as nausea, cramps, diarrea and associated headaches.

Disinfectant Byproducts

<table>
<thead>
<tr>
<th>Substance</th>
<th>Year</th>
<th>Concentration</th>
<th>Concentration</th>
<th>Concentration</th>
<th>Concentration</th>
<th>Typical Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haloacetic Acids (HAA5)</td>
<td>2015</td>
<td>ppb</td>
<td>60</td>
<td>6.6 - 27.8</td>
<td>0</td>
<td>By-product of drinking water disinfection.</td>
</tr>
<tr>
<td>Total Trihalomethanes</td>
<td>2015</td>
<td>ppb</td>
<td>80</td>
<td>20.8 - 52.6</td>
<td>0</td>
<td>By-product of drinking water disinfection.</td>
</tr>
</tbody>
</table>